Evaluations Definition
floatCSEP evaluate forecasts using the routines defined in pyCSEP (See Testing Theory). Depending on the forecast types (e.g., GriddedForecasts or CatalogForecasts), different evaluation functions can be used.
Each evaluation specifies a func
parameter, representing the evaluation function to be applied, a configuration of the function with func_kwargs
(e.g., number of simulations, confidence intervals) and a plot_func
parameter for visualizing the results. Evaluations for GriddedForecasts typically use functions from csep.core.poisson_evaluations
or csep.core.binomial_evaluations
, while evaluations for CatalogForecasts use functions from csep.core.catalog_evaluations
.
Important
An evaluation in test_config
points to a pyCSEP evaluation function, valid for the forecast class.
Example Configuration:
- S-test:
func: poisson_evaluations.spatial_test
plot_func: plot_poisson_consistency_test
plot_kwargs:
one_sided_lower: True
- T-test:
func: poisson_evaluations.paired_t_test
ref_model: Model A
plot_func: plot_comparison_test
Evaluation Parameters
Each evaluation listed in test_config
accepts the following parameters:
Parameter |
Description |
---|---|
func (required) |
Specify which evaluation/test function to run. Must be a pyCSEP |
func_kwargs |
Any keyword argument to control the specific func. For example, |
plot_func (required) |
The function to plot the evaluation results, from either the |
plot_args |
Arguments passed to customize the plot function. Can be titles, labels, colors, font size, etc. Review the documentation of the respective function. |
plot_kwargs |
Keyword arguments to customize the plot function. Review the documentation of the respective function. |
ref_model |
A reference model against which the current model is compared in comparative tests (e.g., Model A). |
markdown |
A description of the test to be used as caption when reporting results |
Evaluations Functions
floatCSEP supports the following evaluations:
Note
Check each function’s docstring to see which func_kwargs
are compatible with it.
Plotting Functions
floatCSEP supports the following:
Note
Check each plot functions’s docstring to see which plot_args
and plot_kwargs
are compatible with it.
It is also possible to assign two or more plotting functions to a test, the plot_args
and plot_kwargs
of which can be placed as dictionaries indented beneath the functions:
Example:
- Number Test:
func: catalog_evaluations.number_test
plot_func:
- plot_number_test:
plot_args:
title: Number test distribution
- plot_consistency_test:
plot_args:
linewidth: 2
plot_kwargs:
one_sided_lower: True